The specification and instruction of Battery management system (BMS)

1. Use, characteristic and functional instruction

BMS has great impact on the entire vehicular safe operation, the choice of controllable strategy and operational cost.

BMS can achieve those functions as follows:

- (1) The detection of monomeric battery voltage
- (2) The detection of battery temperature
- (3) The detection of batteries ' operating electric current
- (4) The detection of insulation resistance
- (5) The estimation of batteries SOC
- (6) Communicate with vehicular equipment; provide necessary battery data CAN1 for the whole vehicular control.
- (7) Communicate with vehicular monitoring equipment; send the battery information to the panel to display CAN2.
- (8) Communicate with charger, safely achieve the battery chargeRS-485.(reserved)
- 2. <u>Operating mode</u>

BMS is vehicular charge mode, charge for the whole batteries.

Under the vehicular mode, The BMS structural picture 1 is as follow. Through the CAN1 general circuitry, BMS (central controlling module) will send the Real-time and necessary battery state to the whole vehicular and motor controller, In order to adopt the more reasonable controlling strategy. Meanwhile, through the high-speed CAN2, BMS (central controlling module) will send the detailed battery information to the vehicular monitoring system.

Picture 1 : The BMS structural

- 3. Main technical parameter
- 3.1 Mechanical parameter
- (1) External dimensions:300*200*43 (unit: mm)
- (2) The size of fixed hole:220*187 (unit: mm)

Picture 2 : The BMS mechanical size

- (3) The position of installation: beside the battery box
- 3.2Technical index

- (1) Voltage detection error:<0.5%(2-6V)
- (2) Temperature testing error: $\leq \pm 1^{\circ} \mathbb{C}$ (-40--125 $^{\circ} \mathbb{C}$)
- (3) Current testing precision: 0.5% (-300A—300A)
- (4) Creepage testing error: < 8%
- (5) SOC testing error: <10%
- (6) Operating temperature: $-25 75 ^{\circ}C$

4. The operation of installation

Each BMS is made up of one central controlling module (mainframe) and four battery testing module (appurtenant).

4.1 The vehicle provides 12 voltages. Controlling module provides CAN1 and CAN2 bus interface.

4.2 The quantity of temperature sense organ

At the output terminal and in the batteries space, there will be 14 temperature sense organs.

4.3 Insulation testing: At main controlling module, the insulation of BMS will be accomplished.

Sequence	Item	Enactment	Instruction
1	maximum	3.7V	In the charge process, maximum monomeric
	monomeric voltage		voltage is allowed.
2	maximum total	233.6V(calculate	In the charge process, maximum total voltage is
	voltage	according to 3.65V/ cell)	allowed.
3	maximum charge	50A	Maximum charge input current of charger.
	current		
4	minimum	2.5V	Under the condition of continuous
	monomeric voltage		discharge ,minimum monomeric voltage is
			allowed
5	minimum total	163V(calculate	Under the condition of continuous discharge,
	voltage	according to 2.55V/ cell)	minimum total voltage is allowed.
6	maximum	80A	Under the condition of continuous discharge,
	discharging current		maximum current is allowed.
7	peak discharging	150A	Duration is less than 18S.
	current		

Iron phosphate Lithium Batteries (64 series) parameter design and alarm setting

8	limitary discharge	55A	When temperature is lower than -15 $^\circ\!\!\mathrm{C}$ or is
	current		higher than 50 $^\circ$ C, or SOC is less than 20% or
			monomeric battery voltage is less than 3.2V.
9	peak charge current	110A	Duration is less than 10S.
10	limitary charge	40A	Environmental temperature is below 0° C.
11	maximum	3.9V	Charger will stop charging immediately once The
	monomeric voltage		maximum monomeric voltage alarm occurs.
	alarm		
12	maximum total	240V(calculate	Charger will stop charging immediately once The
	voltage alarm	according to 3.75V/ cell)	maximum total voltage alarm occurs.
13	monomeric	2.3V	The monomeric low-voltage alarm, battery
10	Low-voltage alarm		output will be closed after the state lasts for 30s.
14	total Low-voltage	153.6V (calculate	The minimum total voltage alarm , battery
	alarm	according to 2.4V/ cell)	output will be closed after the state lasts for 30s.
15	minimum energy	Monomeric	When the battery energy approaches depletion,
10	alarm	voltage <3V or	driver will be reminded immediately back to
		soc<20%	charging station to charge.
16	high temperature	>55 °C	High temperature alarm indicator, battery output
10	alarm		or charger will be closed after the state lasts for
			30s.
17	insulation resistance	>118KΩ	Insulation resistance between the positive and
- /			negative electrode and battery box, there will be
			alarm indicator when the insulation resistance
			declines, prompt repair is required.

Note: The quantity of monocase: 64 batteries The box number of battery: 4 Standard voltage: 3.2V The battery capacity: 40Ah/55Ah The type of battery: iron phosphate Lithium Battery The Manufacturer: EVPST.COM