Electric Vehicle Power System Technology Co., Ltd

Tel:020-85442807 Fax:020-85442807

www.evpst.com

Specification for 15s(12s or 8clls)LiFePo4 balancing Capacitor-BMS

Tech.Datum

1 Maximum over-charge protecting voltage of unit cell:	4.0V±50mV		
2 Maximum over-charge protecting voltage of whole pack:	57V±0.9V		
3 Minimum over-discharge protecting voltage of unit cell:	2.05V±80mV		
4 Minimum over-discharge protecting voltage of whole pack:	34.5V±1.8V		
5 Maximum over-discharge protecting current of whole pack:	300A±60A		
6 Normal rate of discharging current of BMS:	40A		
7 Maximum discharging current of BMS:	60A		
8 Normal rate of charging current of BMS:	20A		
9 Maximum charging current of BMS:	30A		
10 The maximum time delayed of over-charging protecting cutoff:	38		
11 The maximum time delayed of over-discharging protecting cutoff			
12 The maximum delayed of over-chargeing/discharging(150A) prot	ecting cutoff: 20MS		
13 Maximum running current of the balancing BMS:	300uA (unit cell voltage above 3.2v)		
14 Maximum running current of the balancing BMS:	80uA (unit cell voltage under2.0vl)		
15 Maximum internal impedance of the running of the balancing BM	$4m\Omega$ (unit cell voltage ≥2.5v)		
16 Maximum dimensions of BMS:	(L)135mmX(W)51mmX(H)20mm		
17 Maximum weight of the BMS:	135.0g		
18 The BMS design for :	LiFePO4 battery pack with 15		
	cells(Capacity of unit cell≥1Ah) in series connetion		
19 The connecting method of the BMS and LiFePo4 battery pack:			
20 The fixing method of the BMS:	adhesive tape		
21 Working method:	Capacity balancing.Real time balancing		
	(Balancing under charging/discharging and laying aside)		
22 The voltage tolerance of cells:	±5mv-±25mv(requirements for capacity		
	tolerance of LiFePo4 cells :±5%) Max.:±1mv		
23 Maximum working temperature of the BMS:	<20℃		
The temperature requirements for the external world:	—20°C+60°C		

19	The connecting method of the BMS and LiFePo4 battery pack:		

(1)Connecting wires melded on from 0 of the BMS to the negative pole of 1st cell with a 18AWG high temperature endurable silica gel cable wire;; Connecting 1 of the BMS and the positive pole of 1st cell& the negtive pole of 2nd cell with 18AWG high temperature endurable silica gel cable wire;; Connecting 2 of the BMS and the positive pole of 2nd cell & the negative pole of 3rd cell with 18AWG high temperature endurable silica gel cable wire; Connecting 3 of the BMS and the positive pole of 3rd cell & the negative pole of 4th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 4 of the BMS and the positive pole of 4th cell & the negative pole of 5th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 5 of the BMS and the positive pole of 5th cell & the negative pole of 6th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 6 of the BMS and the positive pole of 6th cell & the negative pole of 7th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 7of the BMS and the positive pole of 7th cell & the negative pole of 8th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 8 of the BMS and the positive pole of 8th cell & the negative pole of 9th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 9of the BMS and the positive pole of 9th cell & the negative pole of 10th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 10 of the BMS and the positive pole of 10th cell & the negative pole of 11th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 11 of the BMS and the positive pole of 11th cell & the negative pole of 12th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 12of the BMS and the positive pole of 12th cell & the negtive pole of 13th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 13 of the BMS and the positive pole of 13th cell & the negative pole of 14th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 14 of the BMS and the positive pole of 14th cell & the negative pole of 15th cell with 18AWG high temperature endurable silica gel cable wire; Connecting 15th of the BMS and the positive pole of 15th cell with 18AWG high temperature endurable silica gel cable wire.

- (2)Welding a connecting wire onto OUT- take as (-)negative end for output(The wires connectinng to GND(0) and OUT- should not be smaller then12AWG PE wire)
- (3)To weld a connecting wire which is not smaller than 12AWG PE wire onto the anode of the battery pack take as positive electrode for output.
- (4)Finally,To weld a connecting wire which is bigger than 12AWG PE wire onto P- take as (-)negative end for input. To weld a connecting wire which is bigger than 12AWG PE wire onto the anode of the battery pack take as positive electrode for input.
- 1, Reading the manual first!
- 2, BMS Connecting in a strict order, or the BMS will be damaged!
- 3, an Anti-Static electrcity electric (soldering) iron